Sunday, April 24, 2011

Civil Engineering Main Exam Paper One

Civil Service Civil Engineering Main Exam Paper One Syllabus
                                                          PAPER-1
1. Engineering Mechanics, Strength of Materials and Structural Analysis
1.1 Engineering Mechanics: Units and Dimensions,SI Units,Vectors,Concept of Force, Concept of particle and rigid body.Concurrent,Non-Concurrent and parallel forces in a plane, moment of force, free body diagram, conditions of equilibrium ,Principle of virtual work , equivalent force system
 First and Second Moment of area, Mass moment of Inertia
Static Friction. Kinematics and Kinetics
 Kinematics in Cartesian Co-ordinates, motion under uniform and non-uniform accelearation, motion under gravity. Kinetics of particle: Momentum and Energy principle, collision of elastic bodies rotation of rigid bodies
 1.2 Strength of Materials: Simple stress and Strain, Elastic constants, axially loaded compression members, Shear force and bending moment, theory of simple bending, Shear Stress distribution across cross-sections, Beams of uniform strength
Deflection of beams: Macaulay’s method, Mohr’s Moment area method, Conjugate beam method unit load method. Torsion of Shafts, Elastic stability of columns, Euler’s Rankine’s and Secant formulae.
 1.3 Structural Analusis: Castiglianio’s theorems 1 and II, unit load method of consistent deformation applied tom beams and pin jointed trusses. Slope-deflection, moment distribution
Rolling loads and Influences lines: Influences lines for Shear Force and bending moment at a section of beam. Criteria for maximum shear force and bending Moment on beams traversed by a system of moving loads. Influences lines for simply supported plane pin jointed trusses
Arches: three hinged , two hinged and fixed arches, rib shortening and temperature effects
 Matrix methods of analysis: Force method and displacement method of analysis of indeterminate beams and rigid frames
 Plastic Analysis of beams and frames: theory of plastic bending , plastic analysis , statical method mechanism method
 Unsymmetrical bending:Memont of inertia, product of inertia, position of neural Axis and Principle axes, calculation of bending stresses
2 Design of Structural: Steel ,Concrete and Masonry Structures
2.1 Structural Steel Design: structural Steel: Factors of safety and load factors. Riveted, bolted and welded joints and connections. Design of tension and compression member, beams of built up section, riveted and welded plate girders, gantry girders, stancheons with battens and lacings
 2.2 Design of Concrete and Masonry Structures: concept of mix design.Reinfored Concrete: Working Stress and Limit State method of design-Recommendations of I.S codes. Design of one way and to way slabs, simple and continuous beams of rectangular, T and L sections. Compression members under direct load with or without eccentricity,
Cantilever and Counter fort type retaining walls
 Water tanks: Design requirements for Rectangular and circular tanks arresting on ground
 Prestressed Concrete: Methods and systems of prestressing, anchorages, Analysis and design of sections for flexure based on working stress, loss of prestress.
 Design of brick masonry as per I.S Codes.
3 Fluid Mechanics, Open Channel Flow and Hydraulic Machines
3.1 Fluid Mechanics: Fluid properties and their role in fluid motion, fluid statics including forces acting on plane an curved surfaces
 Kinematics and Dynamics of Fluid flow: Velocity and accelerations, stream lines, equation of continuity, irrigational and rotational flow, velocity potential and stream functions
 Continuity , momentum and energy equation, Navier-Stokes equation ,Euler’s equation of motion application to fluid flow problems, pipe flow, sluice gate, weirs
3.2 Dimensional Analysis and Similitude:Backingham’s Pi-theorem, dimensionless parameters
 3.3 Laminar Flow: Laminar flow between parallel, stationary and moving plates, flow through tube
3.4 Boundary layer: Laminar and turbulent boundary layer on a flat plate, laminar sub layer, smooth and rough boundaries , drag and life
 Turbulent flow through pipes:Characterisitcs of turbulent flow , velocity distribution and variation of pipe friction factor, hydraulic grade line and total energy line
3.5 Open channel flow: Uniform and non –uniform flows , momentum and energy correction factor specific energy and specific force, critical depth, rapidly varied flow , hydraulic jump, gradually varied flow , classification of surface profiles, control section , step method of integration of varied flow equation
3.6 Hydraulic Machines and Hydropower: Hydraulic turbines classification, Choice of turbines performance parameters, controls , characteristics , specific speed
 Principles of hydropower development.
4 Geo-technical Engineering
 Soil Type and structure-graduation and particle size distribution-consistency limits
Water in soil-capillary and structural-effective stress and pore water pressure-permeability concept-field and laboratory determination of permeability-Seepage pressure-quick sand conditions –Shear strength determination-Mohr Coulomb concept
Compaction of soil-Laboratory and field tests
Compressibility and consolidation concept-consolidation theory-consolidation settlement analysis Earth pressure theory and analysis for retaining walls, Applications for sheet piles and Braced excavation
 Bearing capacity of soil-approaches for analysis-Field tests-settlement analysis-stability of slope of earth walk
Subsurface exploration of soils-methods
Foundation-Type and selection criteria for foundation of structures-Design criteria for foundation –Analysis of distribution of stress for footings and pile-pile group action-pile load test .
Ground improvement techniques.

No comments:

Post a Comment

 

blogger templates | Make Money Online